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Surface plasmon resonance (SPR) biosensors have enabled a

wide range of applications in which researchers can monitor

biomolecular interactions in real time. Owing to the fact that

SPR can provide affinity and kinetic data, unique features in

applications ranging from protein–peptide interaction analysis

to cellular ligation experiments have been demonstrated.

Although SPR has historically been limited by its throughput,

new methods are emerging that allow for the simultaneous

analysis of many thousands of interactions. When coupled with

new protein array technologies, high-throughput SPR methods

give users new and improved methods to analyze pathways,

screen drug candidates and monitor protein–protein

interactions.
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Introduction
Surface plasmon resonance (SPR) is an optical biosensor

technique that measures molecular binding events at a

metal surface by detecting changes in the local refractive

index. The depth probed at the metal-aqueous interface

is typically 200 nm [1], making SPR a surface-sensitive

technique ideal for studying interactions between immo-

bilized biomolecules and a solution-phase analyte. SPR

offers several advantages over conventional techniques

such as fluorescence or ELISA (enzyme-linked immuno-

sorbent assay). First, because the measurements are

based on refractive index changes, detection of an analyte

is label free and direct. The analyte does not require

any special characteristics (scattering bands) or labels

(radioactive or fluorescent) and can be detected directly,
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without the need for multistep detection protocols

(sandwich assay). Second, the measurements can be

performed in real time, allowing the user to collect kinetic

data, as well as thermodynamic data. Last, SPR is a

versatile technique, capable of detecting analytes over

a wide range of molecular weights and binding affinities

[2]. Because of its unique features, SPR has become

a powerful tool for studying biomolecular interactions.

For example, SPR has been used to investigate protein–

peptide interactions [3], cellular ligation [4], protein–

DNA interactions [5,6], and DNA hybridization [7,8].

At the current time, most commercially available SPR

sensors offer a small number of independent sensing

channels (<20). Such systems are very useful for perform-

ing detailed studies on a small set of analytes, but are not

practical for high-throughput applications.

An emerging technology within the proteomics arena,

which is beginning to build a presence in the market-

place, is planar protein arrays. The goal of these arrays is

to take existing proteomic methods (ELISA, for

instance), which have limited throughput, and make

them parallel. Based on the pioneering work from

Snyder’s laboratory [9,10], a handful of commercial

protein arrays are available. Most notably, Invitrogen

currently offers its ProtoArrayTM line of high-density

protein arrays, and Sigma has begun to produce antibody

arrays. A promising new method for generating a protein

array utilizes in situ protein expression and capture from

cDNA on a chip surface [11��]. Although not yet to

market, this method provides a powerful new tool by

which a whole proteome, or some significant subset, can

be generated on one array. Regardless of the content or

production method, all of these arrays rely on standard

labeling techniques and give only end-point determina-

tion (i.e. no kinetic data).

The recent development of SPR imaging (or microscopy)

combines the advantages of traditional SPR (kinetic and

affinity data) with high-throughput capabilities, thereby

allowing researchers to simultaneously monitor thousands

of biomolecular interactions. When combined with

protein arrays, SPR imaging technology has the potential

to become an invaluable tool for a broad range of applica-

tions that require high-throughput analysis of biomole-

cular interactions, such as proteomic analysis, drug

discovery and pathway elucidation.
www.sciencedirect.com
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Theory and instrumentation
SPR exploits surface plasmons, special electromagnetic

waves that can be excited at certain metal interfaces, most

notably silver and gold [1]. When incident light is coupled

with the metal interface at angles greater than the critical

angle, the reflected light exhibits a sharp attenuation

(SPR minimum) in reflectivity owing to the resonant

transfer of energy from the incident light to a surface

plasmon. The incident angle (or wavelength) at which the

resonance occurs is highly dependent upon the refractive

index in the immediate vicinity of the metal surface.

Binding of biomolecules at the surface changes the local

refractive index, which results in a shift of the SPR

minimum. By monitoring changes in the SPR signal, it

is possible to measure binding at the surface in real time.

Traditional SPR spectroscopy sensors, which measure the

entire SPR curve as a function of angle or wavelength,

have been widely used, but offer limited throughput. The

development of SPR imaging [12,13] allows for the

simultaneous measurement of thousands of biomolecular

interactions. Typically, an SPR imaging apparatus con-

sists of a coherent p-polarized light source expanded with

a beam expander and consequently reflected from an SPR

active medium to a detector. A CCD (charge-coupled

device) camera collects the reflected light intensity in an

image. SPR imaging measurements are performed at a

fixed angle of incidence that falls within a linear region of

the SPR dip, such that changes in light intensity are

proportional to the changes in refractive index caused

by binding of biomolecules to the surface. As a result,

gray-level intensity correlates with the amount of material

bound to the sensing region (Figure 1) [14,15].

Numerous studies have been devoted to developing SPR

imaging technology, and a handful of instruments are

available commercially. An instrument employing a

broad-band light source combined with Fourier-transform

algorithms was developed by Corn’s laboratory and later

commercialized by GWC Technologies [16]. HTS
Figure 1

SPR imaging. A light source projects light onto a gold surface, on which a b

onto a CCD detector. This process is performed over a period of time and

using software to generate a clean image, from which binding curves are ge
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Biosystems designed an SPR imaging platform utilizing

grating-couplers, which has since been purchased by

BIAcore [17,18]. Systems have been reported using

various light sources, including a broad-band light source

[19,20], an LED [21], and a He-Ne laser. [15] Other

researchers have also reported the use of SPR imaging

systems as a microarray reader [22], and have described

their use in combination with fluorescence labeling [23].

One of the factors determining the sensitivity of an SPR

imaging system is the intensity of the light source. The

signal strength from the metal surface is linearly propor-

tional to the incoming light strength, so a laser light source

is preferred over LEDs and halogen lamps. However,

expanding a spot Gaussian profile from a laser source

using optical elements does not necessarily provide

homogeneous illumination, which results in signal varia-

tion across the spot (i.e. sensing area). This requires a

background correction that can limit the sensitivity of

detection. Additionally, the interference patterns, which

are inherent to coherent laser sources, can also limit the

resolution and sensitivity of spot detection. Taking

advantage of Lumera’s proprietary technology, we have

developed the ProteomicProcessorTM, an SPR imaging

instrument that uses a scalable light source engine to

project laser power to the designated area. This approach

provides a more flexible, homogeneous and significantly

larger illumination area without generating any interfer-

ence patterns. The spatial resolution has been experi-

mentally measured to be approximately 10 mm, giving the

capability to resolve more than 10 000 spots in a 1.4 cm2

microarray. Figures 2 and 3 show a demonstration protein/

antibody array where it was possible to acquire real-time

binding curves and calculate binding and dissociation

constants.

Applications
The past few years have seen dramatic growth in the

number of studies reporting the use of SPR technology,

with over 1000 new publications each year. For a detailed
iomolecular interaction is occurring, and the reflected light is imaged

a collection of images obtained. A background correction is performed

nerated.
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Figure 2

An antibody/protein microarray containing a series of immobilized

proteins, imaged via Lumera’s ProteomicProcessorTM SPR. The image

is a snapshot at a point in time as the array is being probed with

anti-HSA. The spots are �150 mm in diameter.
review of the SPR literature, see the annual reviews

published by Myzska’s group [24,25�,26]. Highlighted

below are a few select applications where the use of

SPR has provided unique data that might not be acces-

sible by traditional methods.

Drug screening

SPR is capable of detecting interactions between small

molecules and immobilized protein targets [27,28],

making it a useful tool for screening drug candidates.

For example, Rich et al. [29] thoroughly characterized the

binding of the small molecule warfarin to immobilized

human serum albumin (HSA) and showed that the

measurements correlated well with solution-phase data.

On the basis of the results, they developed a generalized

method for screening and evaluating interactions

between small molecules and HSA. Researchers from

the same group also measured the binding interactions

of small molecules to the ligand-binding domain of

a human estrogen receptor [30]. Through detailed

measurements of the association and dissociation rate

constants, the authors were able to clearly distinguish

between specific ligands of the receptor and nonligands.
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Cell signaling pathways

Transforming growth factor-b (TGF-b) plays a role in

many cell signaling processes and its overexpression has

been linked to many human pathologies, including fibro-

tic disease and metastasis [31]. TGF-b signaling is

mediated through its interaction with cell-surface recep-

tors RI, RII and RIII. De Crescenzo and colleagues used

a de novo-designed heterodimerizing coiled/coil system

[32] to induce dimerization of the cell-surface receptors,

and utilized SPR to study how the dimerization affected

binding to TGF-b [33��,34]. The use of SPR allowed the

authors to calculate kinetic and thermodynamic con-

stants. On the basis of these calculations, they concluded

that dimerization of the cell-surface receptors stabilized

the interaction with TGF-b.

Kinase analysis

Human protein kinases have a central role in regulating a

wide variety of signaling pathways, which may contribute

to several diseases such as diabetes and cancer. As such,

kinases are intriguing drug targets, resulting in a strong

interest in identifying new kinase proteins, inhibitors and

substrates. Although several high-throughput kinase

microarray studies have been reported [9,10], they rely

on traditional labeling techniques that only provide

end-point analysis. By contrast, SPR has been used to

fully characterize the affinities, kinetics, and thermody-

namics of a handful of smaller kinase systems [3,35]. For

example, Casper et al. [36] investigated the binding of

small-molecule inhibitors to p38a and, in a similar fash-

ion, Nordin and coworkers [37] studied small-molecule

binding to a set of eight different serine/threonine and

tyrosine kinases.

Antibody development

Therapeutic antibodies for the diagnosis and treatment of

cancer represent one of the fastest growing segments of

the pharmaceutical market, but their application has been

limited because of problems with immunogenicity. In

recent years, SPR has proven a valuable tool for evaluat-

ing therapeutic antibodies. For example, Ritter et al. [38]

used SPR to measure the antibody response in the serum

from 44 patients that had been treated with humanized

anti-A33, an antibody that targets colon cancer. In another

report, Gonzales et al. [39] used an SPR-based competi-

tive assay to compare the immunogenicity of a set of

genetically engineered variants of a potential therapeutic

antibody against TAG-72, a protein expressed by a variety

of carcinomas. In both cases, the researchers were able to

directly test patient serum for an immune response to

the therapy, without the need for labels or secondary

reagents. These results suggest that beyond being used

as a tool for developing therapeutic antibodies, SPR also

has the potential to measure treatment efficacy.

Phage display has proven to be a powerful tool for the

development of large antibody libraries. Evaluation of
www.sciencedirect.com
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Figure 3

The injection of monoclonal anti-human serum albumin (anti-HSA) and phosphate-buffered saline (PBS) across the 1032 spot array shown in

Figure 2. (a) Three select curves demonstrate the selectivity of anti-HSA to various well-studied proteins (protein A/G, HSA and ovalbumin).

As expected, HSA has the fastest Kon, whereas protein A/G is second and ovalbumin does not bind. (b) Kinetic constants calculated from the

kinetic curves shown in (a).
such libraries requires extensive screening, which can be

labor-intensive and time-consuming. Recently, Wassaf

et al. [40�] developed an SPR-based array for screening

a library of Fabs generated against human tissue kallik-

rein 1 (hK1), a serine protease linked to inflammation.

The authors printed 96 unique Fabs (in triplicate) per

array, and employed SPR to simultaneously measure

kinetic constants. In total, they ranked almost 200

Fabs by their affinity towards hK1. In addition, SPR

measurements were used to classify the Fabs according

to their ability to recognize different active sites.

Conclusions and future directions: merging
protein arrays with surface plasmon
resonance
Realizing the full potential of SPR imaging will

require seamless integration of SPR with protein array

technology. Towards this goal, Lumera is marrying

protein arrays with high-throughput SPR based on the

combination of its NanoCaptureTM-HPT peptide tag

and ProteomicProcessorTM SPR tool. NanoCaptureTM-

HPT, a highly selective capture mechanism that is
www.sciencedirect.com
compatible with both printed and in situ expression

arrays, involves the highly efficient and specific

(Kd �60 pM) interaction between two synthetic peptide

coils. Expressed proteins are terminated with one

peptide coil (E Coil), while the surface is modified with

the other peptide coil (K Coil). Interaction between the

two coils results in selective protein immobilization on

the array surface.

As protein arrays emerge as a viable technology, it is

clear that high-throughout SPR techniques are crucial

to enabling their full value. We believe that integration

of these two technologies will not only accelerate

discovery in existing applications, but will also play a

significant role in driving the development of new

applications.
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